Kevin Crotty
BUSI 448: Investments
Last time:
Today:
Portfolio are combinations of underlying assets
Given return properties of the underlying assets, what are the return properties of their combination?
\[ E[r_p] = \sum_{i=1}^{N} w_i E[r_i] \]
\[ \text{var}[r_p] = \sum_{i=1}^{N} \sum_{j=1}^{N} w_i w_j \text{cov}[r_i,r_j] \]
\[ \text{var}[r_p] = \sum_{i=1}^{N} \sum_{j=1}^{N} w_i w_j \text{cov}[r_i,r_j] \]
\(w_1 w_1 \text{cov}[r_1,r_1]\) | \(w_1 w_2 \text{cov}[r_1,r_2]\) | \(w_1 w_3 \text{cov}[r_1,r_3]\) |
\(w_2 w_1 \text{cov}[r_2,r_1]\) | \(w_2 w_2 \text{cov}[r_2,r_2]\) | \(w_2 w_3 \text{cov}[r_2,r_3]\) |
\(w_3 w_1 \text{cov}[r_3,r_1]\) | \(w_3 w_2 \text{cov}[r_3,r_2]\) | \(w_3 w_3 \text{cov}[r_3,r_3]\) |
\[ \text{var}[r_p] = \sum_{i=1}^{N} \sum_{j=1}^{N} w_i w_j \text{cov}[r_i,r_j] \]
\(w_1^2 \text{var}[r_1]\) | \(w_1 w_2 \text{cov}[r_1,r_2]\) | \(w_1 w_3 \text{cov}[r_1,r_3]\) |
\(w_2 w_1 \text{cov}[r_2,r_1]\) | \(w_2^2 \text{var}[r_2]\) | \(w_2 w_3 \text{cov}[r_2,r_3]\) |
\(w_3 w_1 \text{cov}[r_3,r_1]\) | \(w_3 w_2 \text{cov}[r_3,r_2]\) | \(w_3^2 \text{var}[r_3]\) |
\[ \text{var}[r_p] = \sum_{i=1}^{N} w_i^2 \text{var}[r_i]+ 2 \sum_{j>i} w_i w_j \text{cov}[r_i,r_j] \]
\(w_1^2 \text{var}[r_1]\) | \(w_1 w_2 \text{cov}[r_1,r_2]\) | \(w_1 w_3 \text{cov}[r_1,r_3]\) |
\(w_2 w_1 \text{cov}[r_2,r_1]\) | \(w_2^2 \text{var}[r_2]\) | \(w_2 w_3 \text{cov}[r_2,r_3]\) |
\(w_3 w_1 \text{cov}[r_3,r_1]\) | \(w_3 w_2 \text{cov}[r_3,r_2]\) | \(w_3^2 \text{var}[r_3]\) |
\[\begin{align} E[r_p] =& w_1 E[r_1] + w_2 E[r_2] \\ =& 0.5 E[r_1] + 0.5 E[r_2] \\ \end{align}\]
\[\begin{align} \text{var}[r_p] =& w_1^2 \text{var}[r_1]+ w_2^2 \text{var}[r_2]+ 2 w_1 w_2 \text{cov}[r_1,r_2] \\ =& 0.5^2 \text{var}[r_1]+ 0.5^2 \text{var}[r_2]+ 2\cdot 0.5\cdot 0.5 \text{cov}_{12} \\ =& 0.25 \text{var}[r_1]+ 0.25 \text{var}[r_2]+ 0.5 \text{cov}[r_1,r_2] \\ \end{align}\]
\[ \text{var}[r_p] = \sum_{i=1}^{N} \sum_{j=1}^{N} w_i w_j \text{cov}[r_i,r_j] = w'Vw \]
Portfolio weights vector \[w'=[w_1\, w_2\,...\,w_N]\]
Covariance matrix of returns: \[\begin{equation*} V = \begin{bmatrix} \text{var}[r_1] & \text{cov}[r_1,r_2] & \dots & \text{cov}[r_1,r_N] \\ \text{cov}[r_2,r_1] & \text{var}[r_2] & \dots & \text{cov}[r_2,r_N] \\ \vdots & \vdots & \ddots & \vdots \\ \text{cov}[r_N,r_1] & \text{cov}[r_N,r_2] & \dots & \text{var}[r_N] \\ \end{bmatrix} \end{equation*}\]
\[ \text{corr}[r_i,r_j] = \rho_{ij} = \frac{\text{cov}[r_i,r_j]}{\text{sd}[r_i]\cdot\text{sd}[r_j]} \]
Given a covariance matrix \(V\): \[\begin{equation*} V = \begin{bmatrix} \text{var}[r_1] & \text{cov}[r_1,r_2] & \dots & \text{cov}[r_1,r_N] \\ \text{cov}[r_2,r_1] & \text{var}[r_2] & \dots & \text{cov}[r_2,r_N] \\ \vdots & \vdots & \ddots & \vdots \\ \text{cov}[r_N,r_1] & \text{cov}[r_N,r_2] & \dots & \text{var}[r_N] \\ \end{bmatrix} \end{equation*}\] and a vector of portfolio weights
\[w'=[w_1\, w_2\,...\,w_N]\,,\]
The portfolio variance is the matrix product:
\[ \text{var}[r_p] = w'Vw \,.\]
BUSI 448