Kevin Crotty
BUSI 448: Investments
Last time:
Today:
Suppose we have a 1-year bond with cash flows of $15 in 6 months and $115 in one year that costs $125.
What is the spot-rate implied price of this bond?
Can we replicate the cash flows of this bond with a portfolio of A, B, C, D?
Bond | Price | Coupon Rate | Maturity | Face Value |
A | 97.5 | 0% | 0.5 | 100 |
B | 95 | 0% | 1.0 | 100 |
C | 955 | 2.5% | 1.5 | 1,000 |
D | 1,000 | 5.75% | 2 | 1,000 |
\[ x_A \cdot A_1 + x_B \cdot B_1 = 15 \]
\[ x_A \cdot A_2 + x_B \cdot B_2 = 115 \]
\[ x_A \cdot 100 + x_B \cdot 0 = 15 \]
\[ x_A \cdot 0 + x_B \cdot 100 = 115 \]
Solving for \(x_A\) and \(x_B\):
\[ x_A = \frac{15}{100} = 0.15\]
\[ x_B = \frac{115}{100} = 1.15\]
What did we do above?
YES!
\[ \begin{align*} x_A \cdot A_1 + x_B \cdot B_1 + x_C \cdot C_1 + x_D \cdot D_1 &= V_1 \\ x_A \cdot A_2 + x_B \cdot B_2 + x_C \cdot C_2 + x_D \cdot D_2 &= V_2 \\ x_A \cdot A_3 + x_B \cdot B_3 + x_C \cdot C_3 + x_D \cdot D_3 &= V_3 \\ x_A \cdot A_4 + x_B \cdot B_4 + x_C \cdot C_4 + x_D \cdot D_4 &= V_4 \end{align*} \]
\[ \begin{matrix} x_A \cdot 100 &+& x_B \cdot 0 &+& x_C \cdot 12.5 &+& x_D \cdot 28.75 &=& 0 \\ x_A \cdot 0 &+& x_B \cdot 100 &+& x_C \cdot 12.5 &+& x_D \cdot 28.75 &=& 100 \\ x_A \cdot 0 &+& x_B \cdot 0 &+& x_C \cdot 1012.5 &+& x_D \cdot 28.75 &=& 0 \\ x_A \cdot 0 &+& x_B \cdot 0 &+& x_C \cdot 0 &+& x_D \cdot 1028.75 &=& 1100 \\ \end{matrix} \]
The system of equations above can be written in matrix notation as:
\[ \mathbf{x} \cdot \mathbf{CF} = \mathbf{cf} \]
\(\mathbf{x} = \begin{bmatrix} x_A & x_B & x_C & x_D \end{bmatrix}\)
\(\mathbf{CF} = \begin{bmatrix} A_1 & A_2 & A_3 & A_4 \\ B_1 & B_2 & B_3 & B_4 \\ C_1 & C_2 & C_3 & C_4 \\ D_1 & D_2 & D_3 & D_4 \\ \end{bmatrix}\)
\(\mathbf{cf}= \begin{bmatrix} V_1 & V_2 & V_3 & V_4 \\ \end{bmatrix}\)
We can solve for \(\mathbf{x}\) in the system of equations
\[ \mathbf{x} \cdot \mathbf{CF} = \mathbf{cf} \]
in python using cf @ np.linalg.inv(CF)
!
BUSI 448