Kevin Crotty
BUSI 448: Investments
Last time:
Today:
\[ r_{i,t} - r_{f,t} = \alpha_i + \beta_i (r_{b,t} - r_{f,t}) + \varepsilon_{i,t} \]
\[ r_{i,t} - r_{f,t} = \alpha_i + \beta_i (r_{m,t} - r_{f,t}) + \varepsilon_{i,t} \]
Beta answers the question:
if the benchmark is up 1%, how much do we expect the asset to be up, all else equal?
Alpha answers the question:
if I were holding the market, could I have improved mean-variance efficiency by investing something in the asset?
How many parameters do we need to estimate for an \(N\) asset covariance matrix?
\[\begin{equation*} \begin{bmatrix} \text{var}[r_1] & \text{cov}[r_1,r_2] & \dots & \text{cov}[r_1,r_N] \\ \text{cov}[r_2,r_1] & \text{var}[r_2] & \dots & \text{cov}[r_2,r_N] \\ \vdots & \vdots & \ddots & \vdots \\ \text{cov}[r_N,r_1] & \text{cov}[r_N,r_2] & \dots & \text{var}[r_N] \\ \end{bmatrix} \end{equation*}\]
How many variance terms?
\[N\]
How many distinct covariance terms?
\[ \frac{N^2-N}{2} \]
N(Assets) | N(Parameters) |
---|---|
5 | 15 |
10 | 55 |
25 | 325 |
50 | 1,275 |
100 | 5,050 |
Under the market model, what is the covariance of two assets \(i\) and \(j\), \(\text{cov}(r_i,r_j)\)?
\[\text{cov}(\alpha_i + \beta_i (r_{m} - r_{f}) + \varepsilon_{i}, \alpha_j + \beta_j (r_{m} - r_{f}) + \varepsilon_{j})\]
\[ \beta_i \beta_j \text{var}(r_m-r_f) \]
For variance terms, we definitely should not ignore the residual variance:
\[ \text{var}(r_i) = \beta_i^2 \text{var}(r_m) + \text{var}(\varepsilon_i) \]
Alternatively, we can just estimate the stock-specific variance directly.
N(Assets) | Pairwise \(\rho\) N(Parameters) | Market Model N(Parameters) |
---|---|---|
5 | 15 | 11 |
10 | 55 | 21 |
50 | 1,275 | 101 |
100 | 5,050 | 201 |
\[ \beta_{\text{adjusted}} = 0.67 \cdot \beta_{\text{adjusted}} + 0.33 \cdot 1 \]
Let’s return to notebook #1 and consider how well shrinking betas performs for our industry portfolios.
BUSI 448