Kevin Crotty
BUSI 448: Investments
Last time:
Today:
Motivated by the size and value anomalies, Fama and French argued for a three factor model.
\[ R_{i,t} - R_{f,t} = \alpha_i + \beta_i (R_{m,t} - R_{f,t}) + s_i SMB_t + h_i HML_t + \varepsilon_{i,t} \]
Form 6 portfolios on size (mkt cap) and value (B/M ratio)
Low B/M | Medium B/M | High B/M | |
---|---|---|---|
Small | Small growth | Small value | |
Large | Large growth | Large value |
\[ SMB_t = \alpha_{\text{SMB}} + \beta_{\text{SMB}} (R_{m,t} - R_{f,t}) + \varepsilon_{i,t} \]
\[ HML_t = \alpha_{\text{HML}} + \beta_{\text{HML}} (R_{m,t} - R_{f,t}) + \varepsilon_{i,t} \]
Can market risk exposure explain momentum?
\[ WML_t = \alpha_{\text{WML}} + \beta_{\text{WML}} (R_{m,t} - R_{f,t}) + \varepsilon_{i,t} \]
What about the size and value factors?
\[ WML_t = \alpha_{\text{WML}} + \beta_{\text{WML}} (R_{m,t} - R_{f,t}) + s_{\text{WML}} SMB_t + h_{\text{WML}} HML_t + \varepsilon_{i,t} \]
The FFC model augments the Fama-French-Carhart model with a momentum factor.
\[ r_{i,t} - r_{f,t} = \alpha_i + \beta_i (r_{m,t} - r_{f,t}) + s_i SMB_t + h_i HML_t + m_i WML_t+ \varepsilon_{i,t} \]
Industrious researchers have continued to generate firm characteristics that correlate with ex post performance.
Recently, Fama and French have argued for the following model:\[\begin{align*} R_{i,t} - R_{f,t} = \alpha_i +& \beta_i (R_{m,t} - R_{f,t}) + s_i SMB_t + h_i HML_t \\ &+ r_i RMW_t + c_i CMA_t + \varepsilon_{i,t} \end{align*}\]
Size factor: SMB (Small Minus Big)
Value factor: HML (High Minus Low)
Operating profitability factor: RMW (Robust Minus Weak)
Investment factor: CMA (Conservative Minus Aggressive)
(Data starts in the 1960s due to availability of accounting information.)
\[ RMW_t = \alpha_{\text{RMW}} + \beta_{\text{RMW}} (R_{m,t} - R_{f,t}) + \varepsilon_{i,t} \]
\[ CMA_t = \alpha_{\text{CMA}} + \beta_{\text{CMA}} (R_{m,t} - R_{f,t}) + \varepsilon_{i,t} \]
Using the estimated factor loadings and estimates of the factor risk permia, the factor model’s estimate of expected returns is:
\[ E[R_i] = R_f + \hat{\beta}_i \hat{\lambda}_{\text{mkt}} + \hat{s}_i \hat{\lambda}_{\text{smb}} + \hat{h}_i \hat{\lambda}_{\text{hml}} + \hat{r}_i \hat{\lambda}_{\text{rmw}} + \hat{c}_i \hat{\lambda}_{\text{cma}}\]
BUSI 448