Kevin Crotty
BUSI 448: Investments
Last time:
Today:
\[ P(y + \Delta y) \approx P(y) + \frac{dP}{dy} \cdot \Delta y + 0.5 \cdot \frac{d^2P}{dy^2} \cdot (\Delta y)^2.\]
Expressed in returns, rather than prices:
\[ \frac{\Delta P}{P(y)} \approx \frac{1}{P}\cdot\frac{dP}{dy} \cdot \Delta y + 0.5 \frac{1}{P} \frac{d^2P}{dy^2} \cdot (\Delta y)^2. \]
\[ \text{convexity} = \frac{1}{P} \cdot \frac{d^2 P}{dy^2}\]
The second-order price approximation is:
\[ P(y + \Delta y) \approx P(y) - \text{mduration}\cdot P(y)\cdot \Delta y + 0.5 \cdot \text{convexity}\cdot P(y) \cdot (\Delta y)^2.\]
The second-order return approximation is:
\[ \frac{\Delta P}{P(y)} \approx -\text{mduration} \cdot \Delta y + 0.5\cdot\text{convexity}\cdot (\Delta y)^2.\]
Positive convexity is desirable for investors
Negative convexity is undesirable for investors
Callable bond: the issuer has the right to call (repurchase) the bond at specified times at pre-determined price(s)
If rates fall,
This creates a ceiling for the bond value at the call price.
At low interest rates, callable debt exhibits negative convexity.
We can calculate the IRR of paying today’s price and receiving cash flows to a call date:
\[ P = \sum_{t=1}^{T_{\text{call}}}\frac{C}{(1+\frac{y_{\text{call}}}{m})^t}+\frac{\text{Call Price}}{(1+\frac{y_{\text{call}}}{m})^{T_{\text{call}}}} \]
An empirical estimate of modified duration at \(y_0\) is:
\[ \widehat{\text{mduration}} = \frac{1}{P_0} \frac{P_{-}-P_{+}}{2\Delta y}.\]
An empirical estimate of convexity at \(y_0\) is:
\[ \widehat{\text{convexity}} = \frac{1}{P_0} \frac{(P_{-} -P_0)-(P_0-P_{+})}{(\Delta y)^2}.\]
BUSI 448